hezar.metrics.accuracy module¶
- class hezar.metrics.accuracy.Accuracy(config: AccuracyConfig, **kwargs)[source]¶
Bases:
Metric
Accuracy metric for numeric arrays backed by Scikit-learn’s accuracy_score.
- Parameters:
config (AccuracyConfig) – Metric config object
**kwargs – Extra config parameters passed as kwargs to update the config
- compute(predictions=None, targets=None, normalize=None, sample_weight=None, n_decimals=None, output_keys=None)[source]¶
Compute the accuracy score for the given predictions against targets.
- Parameters:
predictions – A list of prediction labels
targets – A list of ground truth labels
normalize – Whether to normalize the inputs or not
sample_weight – Sample weight
n_decimals – Floating point decimals for the final score
output_keys – Filter the output keys
- Returns:
A dictionary of the metric results
- class hezar.metrics.accuracy.AccuracyConfig(objective: str = 'maximize', output_keys: tuple = ('accuracy',), n_decimals: 'int' = 4, normalize: bool = True, sample_weight: Iterable[float] = None)[source]¶
Bases:
MetricConfig
- name: str = 'accuracy'¶
- normalize: bool = True¶
- objective: str = 'maximize'¶
- output_keys: tuple = ('accuracy',)¶
- sample_weight: Iterable[float] = None¶