hezar.models.image2text.vit_roberta.vit_roberta_image2text_config module

class hezar.models.image2text.vit_roberta.vit_roberta_image2text_config.DecoderConfig(is_decoder: bool = True, add_cross_attention: bool = True, attention_probs_dropout_prob: float = 0.1, bos_token_id: int = 0, eos_token_id: int = 2, classifier_dropout: float = None, gradient_checkpointing: bool = False, hidden_act: str = 'gelu', hidden_dropout_prob: float = 0.1, hidden_size: int = 768, initializer_range: int = 0.02, intermediate_size: int = 3072, layer_norm_eps: float = 1e-12, max_position_embeddings: int = 514, num_attention_heads: int = 12, num_hidden_layers: int = 12, pad_token_id: int = 2, position_embedding_type: str = 'absolute', type_vocab_size: int = 1, use_cache: bool = True, vocab_size: int = 42000)[source]

Bases: ModelConfig

add_cross_attention: bool = True
attention_probs_dropout_prob: float = 0.1
bos_token_id: int = 0
classifier_dropout: float = None
eos_token_id: int = 2
gradient_checkpointing: bool = False
hidden_act: str = 'gelu'
hidden_dropout_prob: float = 0.1
hidden_size: int = 768
initializer_range: int = 0.02
intermediate_size: int = 3072
is_decoder: bool = True
layer_norm_eps: float = 1e-12
max_position_embeddings: int = 514
num_attention_heads: int = 12
num_hidden_layers: int = 12
pad_token_id: int = 2
position_embedding_type: str = 'absolute'
type_vocab_size: int = 1
use_cache: bool = True
vocab_size: int = 42000
class hezar.models.image2text.vit_roberta.vit_roberta_image2text_config.EncoderConfig(hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: str = 'gelu', hidden_dropout_prob: float = 0.0, attention_probs_dropout_prob: float = 0.0, initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, image_size: int = 224, patch_size: int = 16, num_channels: int = 3, qkv_bias: bool = True, encoder_stride: int = 16)[source]

Bases: ModelConfig

attention_probs_dropout_prob: float = 0.0
encoder_stride: int = 16
hidden_act: str = 'gelu'
hidden_dropout_prob: float = 0.0
hidden_size: int = 768
image_size: int = 224
initializer_range: float = 0.02
intermediate_size: int = 3072
layer_norm_eps: float = 1e-12
num_attention_heads: int = 12
num_channels: int = 3
num_hidden_layers: int = 12
patch_size: int = 16
qkv_bias: bool = True
class hezar.models.image2text.vit_roberta.vit_roberta_image2text_config.GenerationConfig(bos_token_id: int = 0, decoder_start_token_id: int = 0, return_dict_in_generate: bool = False, early_stopping: bool = True, eos_token_id: int = 2, length_penalty: float = 2.0, max_length: int = 64, no_repeat_ngram_size: int = 3, num_beams: int = 4, pad_token_id: int = 2)[source]

Bases: object

bos_token_id: int = 0
decoder_start_token_id: int = 0
early_stopping: bool = True
eos_token_id: int = 2
length_penalty: float = 2.0
max_length: int = 64
no_repeat_ngram_size: int = 3
num_beams: int = 4
pad_token_id: int = 2
return_dict_in_generate: bool = False
class hezar.models.image2text.vit_roberta.vit_roberta_image2text_config.ViTRobertaImage2TextConfig(encoder: hezar.models.image2text.vit_roberta.vit_roberta_image2text_config.EncoderConfig = <factory>, decoder: hezar.models.image2text.vit_roberta.vit_roberta_image2text_config.DecoderConfig = <factory>, generation: hezar.models.image2text.vit_roberta.vit_roberta_image2text_config.GenerationConfig = <factory>)[source]

Bases: ModelConfig

decoder: DecoderConfig
encoder: EncoderConfig
generation: GenerationConfig
name: str = 'vit_roberta_image2text'