hezar.models.sequence_labeling.roberta.roberta_sequence_labeling_config module¶
- class hezar.models.sequence_labeling.roberta.roberta_sequence_labeling_config.RobertaSequenceLabelingConfig(task: str = <TaskType.SEQUENCE_LABELING: 'sequence_labeling'>, num_labels: int = None, id2label: dict = None, attention_probs_dropout_prob: float = 0.1, bos_token_id: int = 0, eos_token_id: int = 2, gradient_checkpointing: bool = False, hidden_act: str = 'gelu', hidden_dropout_prob: float = 0.1, hidden_size: int = 768, classifier_dropout: float = None, initializer_range: int = 0.02, intermediate_size: int = 3072, layer_norm_eps: float = 1e-12, max_position_embeddings: int = 514, num_attention_heads: int = 12, num_hidden_layers: int = 12, pad_token_id: int = 1, position_embedding_type: str = 'absolute', type_vocab_size: int = 1, use_cache: bool = True, vocab_size: int = 42000, prediction_skip_tokens: Tuple[str] = ('<s>', '</s>, <pad>'))[source]¶
Bases:
ModelConfig
- attention_probs_dropout_prob: float = 0.1¶
- bos_token_id: int = 0¶
- classifier_dropout: float = None¶
- eos_token_id: int = 2¶
- gradient_checkpointing: bool = False¶
- id2label: dict = None¶
- initializer_range: int = 0.02¶
- intermediate_size: int = 3072¶
- layer_norm_eps: float = 1e-12¶
- max_position_embeddings: int = 514¶
- name: str = 'roberta_sequence_labeling'¶
- num_attention_heads: int = 12¶
- num_labels: int = None¶
- pad_token_id: int = 1¶
- position_embedding_type: str = 'absolute'¶
- prediction_skip_tokens: Tuple[str] = ('<s>', '</s>, <pad>')¶
- task: str = 'sequence_labeling'¶
- type_vocab_size: int = 1¶
- use_cache: bool = True¶
- vocab_size: int = 42000¶