hezar.metrics.f1 module¶
- class hezar.metrics.f1.F1(config: F1Config, **kwargs)[source]¶
Bases:
Metric
F1 metric for evaluating classification performance using sklearn’s f1_score.
- Parameters:
config (F1Config) – Metric configuration object.
**kwargs – Extra configuration parameters passed as kwargs to update the config.
- compute(predictions=None, targets=None, labels=None, pos_label=1, average=None, sample_weight=None, zero_division='warn', n_decimals=None, output_keys=None)[source]¶
Computes the F1 score for the given predictions against targets.
- Parameters:
predictions – Predicted labels.
targets – Ground truth labels.
labels – List of labels to include in the calculation.
pos_label (int) – Label of the positive class.
average (str) – Type of averaging for the F1 score.
sample_weight (Iterable[float]) – Sample weights for the F1 score.
zero_division (str) – Strategy to use for zero-division, default is “warn”.
n_decimals (int) – Number of decimals for the final score.
output_keys (tuple) – Filter the output keys.
- Returns:
A dictionary of the metric results, with keys specified by output_keys.
- Return type:
dict
- class hezar.metrics.f1.F1Config(objective: str = 'maximize', output_keys: tuple = ('f1',), n_decimals: int = 4, pos_label: int = 1, average: str = 'macro', sample_weight: Iterable[float] | None = None)[source]¶
Bases:
MetricConfig
Configuration class for F1 metric.
- Parameters:
name (MetricType) – The type of metric, F1 in this case.
pos_label (int) – Label of the positive class.
average (str) – Type of averaging for the F1 score.
sample_weight (Iterable[float]) – Sample weights for the F1 score.
output_keys (tuple) – Keys to filter the metric results for output.
- average: str = 'macro'¶
- name: str = 'f1'¶
- objective: str = 'maximize'¶
- output_keys: tuple = ('f1',)¶
- pos_label: int = 1¶
- sample_weight: Iterable[float] = None¶