hezar.metrics.f1 module¶
- class hezar.metrics.f1.F1(config: F1Config, **kwargs)[source]¶
- Bases: - Metric- F1 metric for evaluating classification performance using sklearn’s f1_score. - Parameters:
- config (F1Config) – Metric configuration object. 
- **kwargs – Extra configuration parameters passed as kwargs to update the config. 
 
 - compute(predictions=None, targets=None, labels=None, pos_label=1, average=None, sample_weight=None, zero_division='warn', n_decimals=None, output_keys=None)[source]¶
- Computes the F1 score for the given predictions against targets. - Parameters:
- predictions – Predicted labels. 
- targets – Ground truth labels. 
- labels – List of labels to include in the calculation. 
- pos_label (int) – Label of the positive class. 
- average (str) – Type of averaging for the F1 score. 
- sample_weight (Iterable[float]) – Sample weights for the F1 score. 
- zero_division (str) – Strategy to use for zero-division, default is “warn”. 
- n_decimals (int) – Number of decimals for the final score. 
- output_keys (tuple) – Filter the output keys. 
 
- Returns:
- A dictionary of the metric results, with keys specified by output_keys. 
- Return type:
- dict 
 
 
- class hezar.metrics.f1.F1Config(objective: str = 'maximize', output_keys: tuple = ('f1',), n_decimals: int = 4, pos_label: int = 1, average: str = 'macro', sample_weight: Iterable[float] | None = None)[source]¶
- Bases: - MetricConfig- Configuration class for F1 metric. - Parameters:
- name (MetricType) – The type of metric, F1 in this case. 
- pos_label (int) – Label of the positive class. 
- average (str) – Type of averaging for the F1 score. 
- sample_weight (Iterable[float]) – Sample weights for the F1 score. 
- output_keys (tuple) – Keys to filter the metric results for output. 
 
 - average: str = 'macro'¶
 - name: str = 'f1'¶
 - objective: str = 'maximize'¶
 - output_keys: tuple = ('f1',)¶
 - pos_label: int = 1¶
 - sample_weight: Iterable[float] = None¶