hezar.models.text_generation.t5.t5_text_generation module¶
- class hezar.models.text_generation.t5.t5_text_generation.T5TextGeneration(config: T5TextGenerationConfig, **kwargs)[source]¶
- Bases: - Model- T5 for text to text generation - compute_loss(logits: Tensor, labels: Tensor) Tensor[source]¶
- Compute loss on the model outputs against the given labels - Parameters:
- logits – Logits tensor to compute loss on 
- labels – Labels tensor 
 
 - Note: Subclasses can also override this method and add other arguments besides logits and labels - Returns:
- Loss tensor 
 
 - forward(token_ids, labels=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, **kwargs) Dict[source]¶
- Forward inputs through the model and return logits, etc. - Parameters:
- model_inputs – The required inputs for the model forward 
- Returns:
- A dict of outputs like logits, loss, etc. 
 
 - generate(token_ids, attention_mask=None, **kwargs)[source]¶
- Generation method for all generative models. Generative models have the is_generative attribute set to True. The behavior of this method is usually controlled by generation part of the model’s config. - Parameters:
- model_inputs – Model inputs for generation, usually the same as forward’s model_inputs 
- **kwargs – Generation kwargs 
 
- Returns:
- Generated output tensor 
 
 - is_generative: bool = True¶
 - post_process(generated_ids: Tensor, **kwargs)[source]¶
- Process model outputs and return human-readable results. Called in self.predict() - Parameters:
- model_outputs – model outputs to process 
- **kwargs – extra arguments specific to the derived class 
 
- Returns:
- Processed model output values and converted to human-readable results 
 
 - preprocess(inputs: str | List[str], prefix=None)[source]¶
- Given raw inputs, preprocess the inputs and prepare them for model’s forward(). - Parameters:
- raw_inputs – Raw model inputs 
- **kwargs – Extra kwargs specific to the model. See the model’s specific class for more info 
 
- Returns:
- A dict of inputs for model forward