hezar.models.text_generation.t5.t5_text_generation module

class hezar.models.text_generation.t5.t5_text_generation.T5TextGeneration(config: T5TextGenerationConfig, **kwargs)[source]

Bases: Model

T5 for text to text generation

compute_loss(logits: Tensor, labels: Tensor) Tensor[source]

Compute loss on the model outputs against the given labels

Parameters:
  • logits – Logits tensor to compute loss on

  • labels – Labels tensor

Note: Subclasses can also override this method and add other arguments besides logits and labels

Returns:

Loss tensor

forward(token_ids, labels=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, **kwargs) Dict[source]

Forward inputs through the model and return logits, etc.

Parameters:

model_inputs – The required inputs for the model forward

Returns:

A dict of outputs like logits, loss, etc.

generate(token_ids, attention_mask=None, **kwargs)[source]

Generation method for all generative models. Generative models have the is_generative attribute set to True. The behavior of this method is usually controlled by generation part of the model’s config.

Parameters:
  • model_inputs – Model inputs for generation, usually the same as forward’s model_inputs

  • **kwargs – Generation kwargs

Returns:

Generated output tensor

is_generative: bool = True
loss_func_name: str | LossType = 'cross_entropy'
post_process(generated_ids: Tensor, **kwargs)[source]

Process model outputs and return human-readable results. Called in self.predict()

Parameters:
  • model_outputs – model outputs to process

  • **kwargs – extra arguments specific to the derived class

Returns:

Processed model output values and converted to human-readable results

preprocess(inputs: str | List[str], prefix=None)[source]

Given raw inputs, preprocess the inputs and prepare them for model’s forward().

Parameters:
  • raw_inputs – Raw model inputs

  • **kwargs – Extra kwargs specific to the model. See the model’s specific class for more info

Returns:

A dict of inputs for model forward

required_backends: List[Backends | str] = [Backends.TRANSFORMERS, Backends.TOKENIZERS]