hezar.metrics.precision module¶
- class hezar.metrics.precision.Precision(config: PrecisionConfig, **kwargs)[source]¶
- Bases: - Metric- Precision metric for evaluating classification performance using sklearn’s precision_score. - Parameters:
- config (PrecisionConfig) – Metric configuration object. 
- **kwargs – Extra configuration parameters passed as kwargs to update the config. 
 
 - compute(predictions=None, targets=None, labels=None, pos_label=1, average=None, sample_weight=None, zero_division=None, n_decimals=None, output_keys=None)[source]¶
- Computes the Precision score for the given predictions against targets. - Parameters:
- predictions – Predicted labels. 
- targets – Ground truth labels. 
- labels – List of labels to include in the calculation. 
- pos_label (int) – Label of the positive class. 
- average (str) – Type of averaging for the precision score. 
- sample_weight (Iterable[float]) – Sample weights for the precision score. 
- zero_division (str | float) – Strategy for zero-division, default is 0.0. 
- n_decimals (int) – Number of decimals for the final score. 
- output_keys (tuple) – Filter the output keys. 
 
- Returns:
- A dictionary of the metric results, with keys specified by output_keys. 
- Return type:
- dict 
 
 
- class hezar.metrics.precision.PrecisionConfig(objective: str = 'maximize', output_keys: tuple = ('precision',), n_decimals: int = 4, pos_label: int = 1, average: str = 'macro', sample_weight: Iterable[float] | None = None, zero_division: str | float = 0.0)[source]¶
- Bases: - MetricConfig- Configuration class for Precision metric. - Parameters:
- name (MetricType) – The type of metric, Precision in this case. 
- pos_label (int) – Label of the positive class. 
- average (str) – Type of averaging for the precision score. 
- sample_weight (Iterable[float]) – Sample weights for the precision score. 
- zero_division (str | float) – Strategy for zero-division, default is 0.0. 
- output_keys (tuple) – Keys to filter the metric results for output. 
 
 - average: str = 'macro'¶
 - name: str = 'precision'¶
 - objective: str = 'maximize'¶
 - output_keys: tuple = ('precision',)¶
 - pos_label: int = 1¶
 - sample_weight: Iterable[float] = None¶
 - zero_division: str | float = 0.0¶