hezar.models.sequence_labeling.bert.bert_sequence_labeling module¶
A BERT model for sequence labeling built using HuggingFace Transformers
- class hezar.models.sequence_labeling.bert.bert_sequence_labeling.BertSequenceLabeling(config: BertSequenceLabelingConfig, **kwargs)[source]¶
- Bases: - Model- BERT model for sequence labeling - compute_loss(logits: Tensor, labels: Tensor) Tensor[source]¶
- Compute loss on the model outputs against the given labels - Parameters:
- logits – Logits tensor to compute loss on 
- labels – Labels tensor 
 
 - Note: Subclasses can also override this method and add other arguments besides logits and labels - Returns:
- Loss tensor 
 
 - forward(token_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, **kwargs) Dict[source]¶
- Forward inputs through the model and return logits, etc. - Parameters:
- model_inputs – The required inputs for the model forward 
- Returns:
- A dict of outputs like logits, loss, etc. 
 
 - post_process(model_outputs: Dict[str, Tensor], return_offsets: bool = False, return_scores: bool = False)[source]¶
- Process model outputs and return human-readable results. Called in self.predict() - Parameters:
- model_outputs – model outputs to process 
- **kwargs – extra arguments specific to the derived class 
 
- Returns:
- Processed model output values and converted to human-readable results 
 
 - preprocess(inputs: str | List[str], **kwargs)[source]¶
- Given raw inputs, preprocess the inputs and prepare them for model’s forward(). - Parameters:
- raw_inputs – Raw model inputs 
- **kwargs – Extra kwargs specific to the model. See the model’s specific class for more info 
 
- Returns:
- A dict of inputs for model forward 
 
 - skip_keys_on_load = ['model.embeddings.position_ids', 'bert.embeddings.position_ids']¶