hezar.models.text_generation.gpt2.gpt2_text_generation module¶
- class hezar.models.text_generation.gpt2.gpt2_text_generation.GPT2TextGeneration(config: GPT2TextGenerationConfig, **kwargs)[source]¶
Bases:
Model
- compute_loss(logits: Tensor, labels: Tensor) Tensor [source]¶
Compute loss on the model outputs against the given labels
- Parameters:
logits – Logits tensor to compute loss on
labels – Labels tensor
Note: Subclasses can also override this method and add other arguments besides logits and labels
- Returns:
Loss tensor
- forward(token_ids, past_key_values=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]¶
Forward inputs through the model and return logits, etc.
- Parameters:
model_inputs – The required inputs for the model forward
- Returns:
A dict of outputs like logits, loss, etc.
- generate(token_ids, **kwargs)[source]¶
Generation method for all generative models. Generative models have the is_generative attribute set to True. The behavior of this method is usually controlled by generation part of the model’s config.
- Parameters:
model_inputs – Model inputs for generation, usually the same as forward’s model_inputs
**kwargs – Generation kwargs
- Returns:
Generated output tensor
- is_generative: bool = True¶
- post_process(generated_ids: Tensor)[source]¶
Process model outputs and return human-readable results. Called in self.predict()
- Parameters:
model_outputs – model outputs to process
**kwargs – extra arguments specific to the derived class
- Returns:
Processed model output values and converted to human-readable results
- preprocess(texts: str | List[str], **kwargs)[source]¶
Given raw inputs, preprocess the inputs and prepare them for model’s forward().
- Parameters:
raw_inputs – Raw model inputs
**kwargs – Extra kwargs specific to the model. See the model’s specific class for more info
- Returns:
A dict of inputs for model forward