hezar.models.model_outputs module

Define all model outputs here

class hezar.models.model_outputs.Image2TextOutput(text: str | None = None, score: str | None = None)[source]

Bases: ModelOutput

score: str | None = None
text: str | None = None
class hezar.models.model_outputs.MaskFillingOutput(token: int | None = None, sequence: str | None = None, token_id: str | None = None, score: float | None = None)[source]

Bases: ModelOutput

score: float | None = None
sequence: str | None = None
token: int | None = None
token_id: str | None = None
class hezar.models.model_outputs.ModelOutput[source]

Bases: object

Base class for all models’ prediction outputs (model.predict()/model.post_process() outputs).

Note that prediction outputs must all be a list of ModelOutput objects since we consider only batch inferences.

The helper functions in the class enable it to be treated as a mapping or a dict object.

dict()[source]
items()[source]
keys()[source]
values()[source]
class hezar.models.model_outputs.SequenceLabelingOutput(token: List[List[str]] | None = None, label: List[List[str]] | None = None, start: int | None = None, end: int | None = None, score: List[List[float]] | None = None)[source]

Bases: ModelOutput

end: int | None = None
label: List[List[str]] | None = None
score: List[List[float]] | None = None
start: int | None = None
token: List[List[str]] | None = None
class hezar.models.model_outputs.SpeechRecognitionOutput(text: str | None = None, chunks: List[Dict] | None = None)[source]

Bases: ModelOutput

chunks: List[Dict] | None = None
text: str | None = None
class hezar.models.model_outputs.TextClassificationOutput(label: str | None = None, score: float | None = None)[source]

Bases: ModelOutput

label: str | None = None
score: float | None = None
class hezar.models.model_outputs.TextDetectionOutput(boxes: list[int] = None)[source]

Bases: ModelOutput

boxes: list[int] = None
class hezar.models.model_outputs.TextGenerationOutput(text: str | None = None)[source]

Bases: ModelOutput

text: str | None = None