hezar.models.text_classification.roberta.roberta_text_classification_config module

class hezar.models.text_classification.roberta.roberta_text_classification_config.RobertaTextClassificationConfig(task: str = <TaskType.TEXT_CLASSIFICATION: 'text_classification'>, num_labels: int = None, id2label: dict = None, attention_probs_dropout_prob: float = 0.1, bos_token_id: int = 0, eos_token_id: int = 2, gradient_checkpointing: bool = False, hidden_act: str = 'gelu', hidden_dropout_prob: float = 0.1, hidden_size: int = 768, classifier_dropout: float = None, initializer_range: int = 0.02, intermediate_size: int = 3072, layer_norm_eps: float = 1e-12, max_position_embeddings: int = 514, num_attention_heads: int = 12, num_hidden_layers: int = 12, pad_token_id: int = 1, position_embedding_type: str = 'absolute', type_vocab_size: int = 1, use_cache: bool = True, vocab_size: int = 42000)[source]

Bases: ModelConfig

attention_probs_dropout_prob: float = 0.1
bos_token_id: int = 0
classifier_dropout: float = None
eos_token_id: int = 2
gradient_checkpointing: bool = False
hidden_act: str = 'gelu'
hidden_dropout_prob: float = 0.1
hidden_size: int = 768
id2label: dict = None
initializer_range: int = 0.02
intermediate_size: int = 3072
layer_norm_eps: float = 1e-12
max_position_embeddings: int = 514
name: str = 'roberta_text_classification'
num_attention_heads: int = 12
num_hidden_layers: int = 12
num_labels: int = None
pad_token_id: int = 1
position_embedding_type: str = 'absolute'
task: str = 'text_classification'
type_vocab_size: int = 1
use_cache: bool = True
vocab_size: int = 42000