hezar.models.sequence_labeling.distilbert.distilbert_sequence_labeling module

A DISTILBERT model for sequence labeling built using HuggingFace Transformers

class hezar.models.sequence_labeling.distilbert.distilbert_sequence_labeling.DistilBertSequenceLabeling(config: DistilBertSequenceLabelingConfig, **kwargs)[source]

Bases: Model

compute_loss(logits: Tensor, labels: Tensor) Tensor[source]

Compute loss on the model outputs against the given labels

Parameters:
  • logits – Logits tensor to compute loss on

  • labels – Labels tensor

Note: Subclasses can also override this method and add other arguments besides logits and labels

Returns:

Loss tensor

forward(token_ids, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, **kwargs) Dict[source]

Forward inputs through the model and return logits, etc.

Parameters:

model_inputs – The required inputs for the model forward

Returns:

A dict of outputs like logits, loss, etc.

post_process(model_outputs: Dict[str, Tensor], return_offsets: bool = False, return_scores: bool = False)[source]

Process model outputs and return human-readable results. Called in self.predict()

Parameters:
  • model_outputs – model outputs to process

  • **kwargs – extra arguments specific to the derived class

Returns:

Processed model output values and converted to human-readable results

preprocess(inputs: str | List[str], **kwargs)[source]

Given raw inputs, preprocess the inputs and prepare them for model’s forward().

Parameters:
  • raw_inputs – Raw model inputs

  • **kwargs – Extra kwargs specific to the model. See the model’s specific class for more info

Returns:

A dict of inputs for model forward

required_backends: List[Backends | str] = [Backends.TRANSFORMERS, Backends.TOKENIZERS]