hezar.metrics.rouge module

class hezar.metrics.rouge.ROUGE(config: ROUGEConfig, **kwargs)[source]

Bases: Metric

ROUGE metric for evaluating text summarization using rouge_score.

Parameters:
  • config (ROUGEConfig) – Metric configuration object.

  • **kwargs – Extra configuration parameters passed as kwargs to update the config.

compute(predictions=None, targets=None, use_aggregator=None, n_decimals=None, output_keys=None, **kwargs)[source]

Computes the ROUGE scores for the given predictions against targets.

Parameters:
  • predictions – Predicted summaries.

  • targets – Ground truth summaries.

  • use_aggregator (bool) – Flag to enable score aggregation for multiple references.

  • n_decimals (int) – Number of decimals for the final score.

  • output_keys (tuple) – Filter the output keys.

Returns:

A dictionary of the metric results, with keys specified by output_keys.

Return type:

dict

required_backends: List[str | Backends] = [Backends.ROUGE]
class hezar.metrics.rouge.ROUGEConfig(objective: str = 'maximize', output_keys: tuple = ('rouge1', 'rouge2', 'rougeL', 'rougeLsum'), n_decimals: int = 4, use_stemmer: bool = False, use_aggregator: bool = True, multi_ref: bool = True)[source]

Bases: MetricConfig

Configuration class for ROUGE metric.

Parameters:
  • name (MetricType) – The type of metric, ROUGE in this case.

  • use_stemmer (bool) – Flag to enable stemming when computing ROUGE.

  • use_aggregator (bool) – Flag to enable score aggregation for multiple references.

  • multi_ref (bool) – Flag to indicate if multiple references are present.

  • output_keys (tuple) – Keys to filter the metric results for output.

multi_ref: bool = True
name: str = 'rouge'
objective: str = 'maximize'
output_keys: tuple = ('rouge1', 'rouge2', 'rougeL', 'rougeLsum')
use_aggregator: bool = True
use_stemmer: bool = False