hezar.models.sequence_labeling.roberta.roberta_sequence_labeling module¶
A RoBERTa Language Model (HuggingFace Transformers) wrapped by a Hezar Model class
- class hezar.models.sequence_labeling.roberta.roberta_sequence_labeling.RobertaClassificationHead(config)[source]¶
Bases:
Module
Head for sentence-level classification tasks.
- forward(inputs, **kwargs)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class hezar.models.sequence_labeling.roberta.roberta_sequence_labeling.RobertaSequenceLabeling(config, **kwargs)[source]¶
Bases:
Model
A standard 🤗Transformers RoBERTa model for sequence labeling
- Parameters:
config – The whole model config including arguments needed for the inner 🤗Transformers model.
- compute_loss(logits: Tensor, labels: Tensor) Tensor [source]¶
Compute loss on the model outputs against the given labels
- Parameters:
logits – Logits tensor to compute loss on
labels – Labels tensor
Note: Subclasses can also override this method and add other arguments besides logits and labels
- Returns:
Loss tensor
- forward(token_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, **kwargs)[source]¶
Forward inputs through the model and return logits, etc.
- Parameters:
model_inputs – The required inputs for the model forward
- Returns:
A dict of outputs like logits, loss, etc.
- post_process(model_outputs: Dict[str, Tensor], return_offsets: bool = False, return_scores: bool = False)[source]¶
Process model outputs and return human-readable results. Called in self.predict()
- Parameters:
model_outputs – model outputs to process
**kwargs – extra arguments specific to the derived class
- Returns:
Processed model output values and converted to human-readable results
- preprocess(inputs: str | List[str], **kwargs)[source]¶
Given raw inputs, preprocess the inputs and prepare them for model’s forward().
- Parameters:
raw_inputs – Raw model inputs
**kwargs – Extra kwargs specific to the model. See the model’s specific class for more info
- Returns:
A dict of inputs for model forward
- skip_keys_on_load = ['roberta.embeddings.position_ids', 'model.embeddings.position_ids']¶